In sequence labeling problems, we cannot always label each sequence element independently (i.e., in isolation), as the best prediction for the y_t may depend on the label at y_{t-1} and so on...
PART OF SPEECH TAGS

- The “parts of speech” consist of several major categories—the key four being *noun*, *verb*, *adjective*, and *adverb*—plus adpositions, particles, discourse markers, fillers, numbers, punctuation, and so on, but most systems also encode additional morphological distinctions.

- Sets vary from about a dozen (the “Universal tagset”; Petrov et al. 2012) to several hundred (Hungarian; Oravecz & Dienes 2002).
UNIVERSAL TAGSET

- ADJ: adjective
- ADP: adposition
- ADV: adverb
- CONJ: conjunction
- DET: determiner
- NOUN: noun
- NUM: number
- PRON: pronoun
- PRT: particle
- VERB: verb
- .: punctuation
- X: all other

[Source: Petrov et al. 2012]
PENN TREEBANK TAGSET

- **JJ, JJR, JJS**: adjective
- **IN**: preposition
- **RB, RBR, RBS, WRB**: adverb
- **CC**: conjunction
- **DT, EX, PDT, WDT**: determiner
- **NN, NNS, NNP, NNPS**: noun
- **CD**: number
- **PRP, PRP$, WP, WP$**: pronoun
- **POS, RP, TO**: preposition
- **MD, VB, VBD, VBG, VBN, VBZ**: verb
- **#, $, '`, ', -LRB-, -RRB-, ., etc.**: punctuation
- **FW, LS, SYM, UH**: others

[Source: Santorini 1990]
Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.
USING TAGS

• Find all instances of some morphological class

• But more often, used as “downstream” features for:

 Parsing (shallow, dependency, constituency)

 Word sense disambiguation (e.g., dog_n vs. dog_v)
NOUN PHRASE CHUNKING

• A NP-chunk is a non-recursive, non-overlapping noun phrase:

 [Pierre Vinken], [61 years] old, will join [the board] as [a nonexecutive director] [Nov. 2].

• Can encode this using tags (BIO encoding):

 [Pierre/B Vinken/I], /O [61/B years/I] old, /O will/O join/O [the/B board/I] as/O [a/B nonexecutive/I director/I] [Nov./B 29/I]. /O

[Source: Ramshaw & Marcus 1995, Tjong Kim Sang & Veenstra 1999]
OTHER SEQUENCE TAGGING APPLICATIONS

• Joint POS tagging/chunking

• Named entity recognition:

 [PERS Pierre Vinken] ... will join [ORG the board] ...

• Time expression recognition:

 ... [Nov. 2](1990-11-02) ...
GENERATIVE TAGGING MODELS

• Objective: find a tag sequence $t_{i\ldots n}$ for a sentence $w_{i\ldots n}$

• This is represented by the joint probability distribution $P(w_{i\ldots n}, t_{i\ldots n})$, which may either be observed (supervised learning) or inferred from $w_{i\ldots n}$ sequences (unsupervised learning via the forward-backward algorithm)

• At inference time, we ask “what tag sequence gave rise to this sentence?” and select the tag sequence $t_{i\ldots n}$ maximizing the conditional probability
GENERATIVE HIDDEN MARKOV MODEL TAGGING

• Construct a lattice of size $|n| \times |t|$, each state of which stores the probability of observation i being labeled t

• Simple case (bigram tagger):

$$P(w_i \mid t_i) P(t_i \mid t_{i-1})$$

• Complex case (HunPos tagger):

$$P(w_i \mid t_i, t_{i-1}, t_{i-2}) P^*(t_i)$$

where $P^*(t_i) = \lambda_1 P(t_i) + \lambda_2 P(t_i \mid t_{i-1}) + \lambda_3 P(t_i \mid t_{i-1}, t_{i-2})$
DISCRIMINATIVE HIDDEN MARKOV MODEL TAGGING

• We’re really interested in $P(t_i \mid w_i..., t_{i-1}...) \text{ but the generative model requires a difficult-to-construct estimate for } P(w_i \mid t_i...)$

• Discriminative methods directly estimate $P(t_i \mid w_i..., t_{i-1}...) \text{ from observed word/tag sequences}$

• At inference (tagging) time, we ask “what is the most likely tag sequence for this sentence?”
DISCRIMINATIVE POS TAGGING FEATURES

• “Emission” features:
 • Token identity: $w_i = 'FOUR'$
 • Identity of adjacent tokens: $w_{i-1} = 'SCORE'$
 • (String) prefixes and suffixes of token: $\text{suf3}(w_i) = 'NTY'$
 • Capitalization of token: $\text{case}(w_i) = \text{*title*}$

• “Transition” features:
 • Tag history unigram: $t_{i-2} = 'NN'$
 • Tag history suffix: $t_{i-2} = 'NN'$, $t_{i-1} = 'IN'$
HMM DECODING

• In greedy decoding, we generate the “transition” features at time t using current best hypotheses for $y_{1\ldots t-1}$. The prediction is the one which maximizes the score of the emission features at t and these hallucinated transition features.

• In Viterbi decoding (Collins 2002), we construct a lattice of scores for each possible label at each time point. Let the j-th state at time t be denoted by $\sigma_{j,t}$, and its score be given by $s(\sigma_{j,t})$. We first select the most likely prior state at time t, selected by identifying the prior state $\sigma_{j,t-1}$ maximizing $s(\sigma_{i,t-1} \rightarrow \sigma_{j,t})$, defined as the sum of the score of the prior state $-s(\sigma_{j,t})$ —and the model score for the $\sigma_{i,t-1} \rightarrow \sigma_{j,t}$ transition. Then, $s(\sigma_{j,t})$ is the sum of $\sigma_{j,t-1} + s(\sigma_{i,t-1} \rightarrow \sigma_{j,t})$ and the model score for emitting j at time t. Once the lattice is complete, we find the most likely label at the last position and follow backtraces to generate the most likely sequence.