NATURAL LANGUAGE SYNTAX

CS662: Natural Language Processing
2015-02-05
How does word order relate to meaning?

If you told your friend you have to go home to do something, why can’t your friend later ask you What did you go home because you needed to do?

If Tim told Tom that he needed some time off, who exactly wants a vacation?

(for another time) Can you use finite-state automata to parse natural languages? Can natural languages be parsed in polynomial time or better?
OUTLINE

• Constituency

• WH-movement (syntactic displacement)

• Case Theory (conditions on noun phrase position)

• Binding Theory (conditions on pronoun interpretation)
CONSTITUENCY
STRUCTURE DEPENDENCE

The dog is large.
Is the dog large?

The ragtime pianist who used to date Kitty is here.
Is the ragtime pianist who used to date Kitty here?

The rule of “yes/no” question formation reorders structural units—constituents—not just words.
“20 Songs By Women That Will Turn 20 In 2014”:

[20 Songs By Women] [That Will Turn 20 In 2014]
e.g., Tori Amos - Cornflake Girl

[20 Songs] [By Women That Will Turn 20 In 2014]
e.g., Cher Lloyd - Want U Back
CONSTITUENCY TESTS

Substitution: e.g., pronouns can replace noun phrases

The ragtime pianist who used to date Kitty is here.
He is here.

Movement: e.g., adverb phrases can be preposed

The dog snatched the taco as quick as could be.
As quick as could be, the dog snatched the taco.
WH-MOVEMENT
WH-MOVEMENT

Direct WH-questions:

Gisi will pick the red horse.
[Which horse] \(t \) will Gisi pick \(t \)?

Indirect WH-questions:

Johannes knows Gisi will pick the red horse.
Johannes wonders [which horse] \(t \), Gisi will pick \(t \).
WH-MOVEMENT ELEMENTS

[Which house]_i is Mary’s _t_i?

The subscript _i indicates things that are coindexed.

The square brackets denote the WH-phrase.

_t_i is a trace indicating the position the WH-phrase (with the same subscript) is to be interpreted at.
APPARENT UNBOUNDEDNESS

What is he reading t_i?

What did he say he was reading t_i?

What does she believe he said he was reading t_i?

What are they claiming she believes he said he was reading t_i?

What do you think they are claiming she believes he said he was reading t_i?
ROSS’S ISLAND CONSTRAINTS

Coordinate structures:

*What$_i$ did Morty cook t_i and wash the dishes?
*What$_i$ did Morty cook chili and wash t_i?

Complex NPs:

*[[How many cities]$_i$ did you hear the rumor that Quinn has visited?
*What$_i$ does Kiwi believe the report that Alan eats t_i?

[Sources: Ross 1967]
CROSSSLINGUISTIC VARIATION IN WH-MOVEMENT

WH-in-situ languages: e.g., Mandarin

Judou xiang-zhidao shei mai-le shenme
Judou want-know who buy-ASP what
‘For which person does J. wonder what that person bought?’
‘For which thing does J. wonder what person bought it?’

Multiple-WH languages: e.g., Romanian

Cine cui ce ziceai ča i-a promis?
who to.whom what say.2SG.PST that to.him-has promise
‘Who do you say promised what to whom?’

[Sources: Cheng 1997, Rudin 1988]
CASE THEORY
TWO SENSES OF “CASE”

1. case (small-c): inflectional morphology encoding the grammatical function of noun phrases

 \[\text{Der Mann sieht } \underline{\text{den}} \text{ Hund.} \quad \text{(German)}\]
 \[\text{Den Hund sieht } \underline{\text{der}} \text{ Mann.}\]
 \[\text{\underline{Der} Hund sieht } \underline{\text{den}} \text{ Mann.}\]
 \[\text{\underline{Den} Mann sieht } \underline{\text{der}} \text{ Hund.}\]

 \[\ldots\text{clāmōr ad cael-um uoluendus per aether-a uāgit} \quad \text{(Latin)}\]

2. Case (big-C): an abstract relationship between verbs and noun phrases governing the position of the latter
PRONOUN CASE

She will help them.
*They will help she.

Ulf expected her to forget the caviar.
*Ulf expected she to forget the caviar.
TRANSITIVITY AND CASE ALIGNMENT

Transitive verbs have at least one object:

Olga loves empanadas.

Intransitive verbs have no object:

Unergative verbs have an agent subject:

Björn hunts.

Unaccusative verbs have an patient subject:

The vase broke.
ERGATIVITY

Nominative-accusative language: (e.g., Japanese)

Otoko ga tsuita.
man NOM arrived
‘the man arrived’

Otoko ga kodomo o mita.
man NOM child ACC saw
‘the man saw the child’

Ergative-absolutive language: (e.g., Basque)

Gizon-ak etorri da.
man-ABS has arrived

Gizon-ak mutil-a ikusi du.
man-ERG boy-ABS saw
RAISING & CONTROL VERBS

Raising to object:

Stephanie expects *her* to concede.

Object control:

Daniel asked *him* to leave.

Subject control:

Denny refuses to help out around the house.
PARENT ANNOTATION AND LEXICALIZATION

To capture these behaviors, probabilistic constituent parsing grammars use information about:

parent annotation: parent of a non-terminal

e.g., NP^S is an NP subject (probably)

lexicalization: head daughter of a non-terminal

e.g., $VP(expects)$ is a raising verb-headed phrase
BINDING THEORY
NODE TYPES

Royce is a terminal node

NP and NNPS are non-terminal nodes

NNPS is the mother of Royce

Royce is the daughter of NNPS
A dominates B if and only if A is “above” B (A is a parent/grandparent, etc. of B)

VP dominates VBD, NP, DT, NN and the last 3 terminals

A immediately dominates B if and only if A dominates B and there is no node C (≠ A, B) such that A dominates C and C dominates B

S immediately dominates NP and VP
A c-commands B if and only if neither A nor B dominates the other, and the lowest branching node that dominates A also dominates B.

VP c-commands “dog”

“dog” doesn’t c-command VP

Sisters c-command each other
NOUN PHRASE TYPES

1. Full noun phrases: the question, the student that asked the question

2. Ordinary personal pronouns: I, you, they

3. Reflexive pronouns: myself, yourself, themselves

4. Reciprocal pronouns: each other, one another
ANAPHORA

Pronouns are noun phrases that necessarily refer to an antecedent in the discourse.

Determining the antecedents of pronouns is known as anaphora resolution.

This is an ill-posed problem: it is not always possible to determine what a pronoun’s antecedent is:

Tim told Tom that he needed some time off.
(is he Tim, Tom, or some other male antecedent?)
PERSONAL PRONOUNS

*Paz\(_i\) helped her\(_i\).

*[Paz’s sister]\(_i\) helped her\(_i\).

Paz\(_i\)’s sister helped her\(_i\).

*She\(_i\) knew Ginny\(_i\).
PRINCIPLE B

(to be revised, but not here) a personal pronoun cannot be bound by a c-commanding antecedent
If Taissa$_i$ tries, she$_i$ will succeed.

If she$_i$ tries, Taissa$_i$ will succeed.

*At Sofía$_i$’s house she$_i$ spent many days.

*She$_i$ spent many days at Sofía$_i$’s house.
REFLEXIVES & RECIPROCALS

Paz\(_i\) helped herself\(_i\).

[Paz’s sister]\(_i\) helped herself\(_i\).

*Paz’s sister helped herself\(_i\).

*Herself\(_i\) knew Violet\(_i\).

*Violet knows [each other]\(_?\).
PRINCIPLE A

(to be revised, but not here) a reflexive or reciprocal must be bound by a c-commanding antecedent

```
S
  NP
    NNP  VBD  NP
      Paz_i  helped  PRP
          herself_i

S
  NP
    NNP  POS  NN
      Paz_i  's  sister

S
  VP
    VBD  NP
      helped  PRP
          herself_i
```
COMPUTATIONAL MODELS OF ANAPHORA RESOLUTION

• Largely operate over constituency parse trees

• Soft (stochastic) preferences are very useful, e.g.:
 • antecedents tend to be syntactic subjects
 • anaphors and their antecedents tend to be “close” in linear order

• Hobb’s algorithm (for finding personal pronoun antecedents): breadth-first, left-to-right search for a candidate NP matching in gender and number