Penn Treebank non-terminal labels (LHSES) are relatively simple and do not contain much information about the context they occur in.

Penn Treebank constituents (RHSES) are relatively flat (i.e., long) and thus rather sparse.

Thus PCFG rules of the form

\[p(\text{LHS} \rightarrow \text{RHS}) = p(\text{RHS} | \text{LHS}) \]

are too uniform in LHS and too sparse in RHS.
The tall red dog chewed an exciting bone.
Klein & Manning (2003) identify two major factors that determine how PCFG rules can be conditioned:

The degree of vertical context of the LHS, v

The degree of horizontal context in the RHS, h

In PTB, $v = 1$ and $h = \infty$. (This is historical accident.)

It is natural to add LHS vertical context by increasing v, and reduce RHS sparsity by decreasing h
TAG SPLITTING

Penn Treebank tags are not sufficiently fine-grained to capture important $p(w \mid t)$ distinctions, so we can decorate preterminals with their parents.

E.g., all the following are tagged IN:

- Subordinating conjunctions (while, as, if), under IN$^{\wedge}$S
- Complementizers (that, for) under IN$^{\wedge}$SBAR
- Prepositions (of, in, from) under IN$^{\wedge}$PP
“…the most common adverbs [RB—KG] directly under ADVP are also (1599) and now (544). Under VP, they are n’t (3779) and not (922). Under NP, only (215) and just (132), and so on.” (Klein & Manning 2003)
For \(v = 2 \), it is not merely

\[p(\text{DT JJ JJ NN | NP}) \]

but now

\[p(\text{DT JJ JJ NN | NP}^S) . \]

So, e.g., **NPs** with **S** parents (subjects) will be marked **NP^S** whereas **NPs** with **VP** parents (objects) will be **NP^VP**.
“The category symbols are too coarse to adequately render the expansions independent of the contexts. For example, subject NP expansions are very different from object NP expansions: a subject NP is 8.7 times more likely than an object NP to expand as just a pronoun. Having separate symbols for subject and object NPs allows this variation to be captured and used to improve parse scoring.” (Klein & Manning 2003)
First, condition the LHS (e.g., S) on the head child category H (e.g., VP) in the RHS; e.g., $S(VP)$.

Then, binarize the non-head categories of the RHS to the left (e.g., $ADVP$) and right (VBZ, NP, PP) and generate them working from the inside out.
LEXICALIZATION

Condition LHSes (e.g., NP) based on the head word H_w (e.g., dog) of the RHS; e.g., NP(dog), rather than just the category of the head.
Collins Parser Model

Essentially: $v = 2$, $h = 2$, with lexicalization.

To expand a non-terminal category P:

First, pick the category of the RHS head H according to P, the headword terminal H_w, and headword tag H_t:

$$p(H \mid P, H_w, H_t)$$

...
Then, to generate each child, pick the child’s category C and headword tag CH_t according to P, H, H_w, H_t, and the distance between the child and the RHS head Δ:

$$p_c(C, CH_t | P, H, H_w, H_t, \Delta)$$

and then pick the child’s new headword according to:

$$p_{cw}(CH_w | P, H, H_w, H_t, \Delta, C, CH_t) .$$
Collins conditions the selection of constituents heads CH_w of the RHS on the headword H_w of the constituent.

But, Gildea (2001) finds that bilexical dependencies add little, and don’t generalize well to out-of-domain data.
Some Penn Treebank non-terminal contain information about the presence of empty categories (e.g., null subjects in relative clauses like *the dog [Eleanor likes]*) which is usually discarded. These non-terminals have drastically different selectional properties, so it is helpful to, e.g., relabel them GAPPED-S.